Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 918: 170629, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38320700

RESUMO

Cover crop cultivation can be a vital strategy for mitigating climate change in agriculture, by increasing soil carbon stocks and resource efficiency within the cropping system. Another mitigation option is to harvest the cover crop and use the biomass to replace greenhouse gas-intensive products, such as fossil fuels. Harvesting cover crop biomass could also reduce the risk of elevated N2O emissions associated with cover crop cultivation under certain conditions, which would offset much of the mitigation potential. However, harvesting cover crops also reduces soil carbon sequestration potential, as biomass is removed from the field, and cultivation of cover crops requires additional field operations that generate greenhouse gas emissions. To explore these synergies and trade-offs, this study investigated the life cycle climate effect of cultivating an oilseed radish cover crop under different management strategies in southern Scandinavia. Three alternative scenarios (Incorporation of biomass into soil; Mowing and harvesting aboveground biomass; Uprooting and harvesting above- and belowground biomass) were compared with a reference scenario with no cover crop. Harvested biomass in the Mowing and Uprooting scenarios was assumed to be transported to a biogas plant for conversion to upgraded biogas, with the digestate returned to the field as an organic fertiliser for the subsequent crop. The climate change mitigation potential of cover crop cultivation was found to be 0.056, 0.58 and 0.93 Mg CO2-eq ha-1 in the Incorporation, Mowing and Uprooting scenario, respectively. The Incorporation scenario resulted in the highest soil carbon sequestration, but also the greatest soil N2O emissions. Substitution of fossil diesel showed considerable mitigation potential, especially in the Uprooting scenario, where biogas production was highest. Sensitivity analysis revealed a strong impact of time of cover crop establishment, with earlier establishment leading to greater biomass production and thus greater mitigation potential.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Mudança Climática , Biocombustíveis , Agricultura/métodos , Solo , Carbono/análise , Óxido Nitroso/análise
2.
Commun Chem ; 4(1): 52, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-36697586

RESUMO

Superabsorbent polymers (SAP) are a central component of hygiene and medical products requiring high liquid swelling, but these SAP are commonly derived from petroleum resources. Here, we show that sustainable and biodegradable SAP can be produced by acylation of the agricultural potato protein side-stream (PPC) with a non-toxic dianhydride (EDTAD). Treatment of the PPC yields a material with a water swelling capacity of ca. 2400%, which is ten times greater than the untreated PPC. Acylation was also performed on waste potato fruit juice (PFJ), i.e. before the industrial treatment to precipitate the PPC. The use of PFJ for the acylation implies a saving of 320 000 tons as CO2 in greenhouse gas emissions per year by avoiding the industrial drying of the PFJ to obtain the PPC. The acylated PPC shows biodegradation and resistance to mould growth. The possibilities to produce a biodegradable SAP from the PPC allows for future fabrication of environment-friendly and disposable daily-care products, e.g. diapers and sanitary pads.

3.
Sci Total Environ ; 637-638: 1395-1399, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29801232

RESUMO

Wetlands have been successfully implemented as water purification systems for removal of plant nutrients and can play a significant role in nutrient recycling, depending on use of the harvested biomass. In a constructed wetland in southern Sweden examined in this study, assimilation of plant nutrients in wetland biomass corresponded to 234 kg/ha nitrogen, 22.8 kg/ha phosphorus, and 158 kg/ha potassium in the study year (2016). The harvested biomass, composed exclusively of common reed, was evaluated as a substrate for production of oyster mushrooms, one of the most widely produced edible mushrooms in the world. The biological efficiency of the substrate was 138 ±â€¯10%, corresponding to production of 1.4 kg mushrooms (fresh weight) based on 1 kg reed (dry weight). The fruiting bodies had high quality, with total protein concentration 18.3 ±â€¯2.8% and very low levels of contaminating heavy metals. Thus, nutrient assimilation in wetland biomass not only decreases the risk of eutrophication in recipient waters, but can be utilized for direct production of high-quality food. The biomass remaining after mushroom production, composed of mycelium and partly degraded wetland biomass, has potential for use in ruminant feed, i.e., as roughage.


Assuntos
Agaricales/fisiologia , Biodegradação Ambiental , Áreas Alagadas , Biomassa , Eutrofização , Metais Pesados , Nitrogênio/análise , Fósforo/análise , Plantas , Poaceae , Reciclagem , Suécia , Eliminação de Resíduos Líquidos , Purificação da Água
4.
Plant Physiol Biochem ; 113: 1-5, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28152389

RESUMO

Climate change impacts rainfall patterns which may lead to drought stress in rain-fed agricultural systems. Crops with higher drought tolerance are required on marginal land with low precipitation or on soils with low water retention used for biomass production. It is essential to obtain plant breeding tools, which can identify genotypes with improved drought tolerance and water use efficiency (WUE). In C3 plant species, the variation in discrimination against 13C (Δ13C) during photosynthesis has been shown to be a potential indicator for WUE, where discrimination against 13C and WUE were negatively correlated. The aim of this study was to determine the variation in the discrimination against 13C between species and cultivars of three perennial C3 grasses (Dactylis glomerata (cocksfoot), Festuca arundinacea (tall fescue) and Phalaris arundinacea (reed canary grass)) and test the relationships between discrimination against 13C, season-long water use WUEB, shoot and root biomass production in plants grown under well-watered and water-limited conditions. The grasses were grown in the greenhouse and exposed to two irrigation regimes, which corresponded to 25% and 60% water holding capacity, respectively. We found negative relationships between discrimination against 13C and WUEB and between discrimination against 13C and shoot biomass production, under both the well-watered and water-limited growth conditions (p < 0.001). Discrimination against 13C decreased in response to water limitation (p < 0.001). We found interspecific differences in the discrimination against 13C, WUEB, and shoot biomass production, where the cocksfoot cultivars showed lowest and the reed canary grass cultivars highest values of discrimination against 13C. Cocksfoot cultivars also showed highest WUEB, shoot biomass production and potential tolerance to water limitation. We conclude that discrimination against 13C appears to be a useful indicator, when selecting C3 grass crops for biomass production under drought conditions.


Assuntos
Biomassa , Isótopos de Carbono/metabolismo , Poaceae/fisiologia , Água/metabolismo , Isótopos de Carbono/análise , Dactylis/crescimento & desenvolvimento , Dactylis/metabolismo , Dactylis/fisiologia , Secas , Festuca/crescimento & desenvolvimento , Festuca/metabolismo , Festuca/fisiologia , Phalaris/crescimento & desenvolvimento , Phalaris/metabolismo , Phalaris/fisiologia , Fotossíntese/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , Estações do Ano , Solo/química , Estresse Fisiológico
5.
Ann Bot ; 117(7): 1229-39, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27192706

RESUMO

BACKGROUND AND AIMS: The C4 perennial grass miscanthus has been found to be less sensitive to cold than most other C4 species, but still emerges later in spring than C3 species. Genotypic differences in miscanthus were investigated to identify genotypes with a high cold tolerance at low temperatures and quick recovery upon rising temperatures to enable them to exploit the early growing season in maritime cold climates. Suitable methods for field screening of cold tolerance in miscanthus were also identified. METHODS: Fourteen genotypes of M. sacchariflorus, M. sinensis, M. tinctorius and M. × giganteus were selected and grown under warm (24 °C) and cold (14 °C) conditions in a controlled environment. Dark-adapted chlorophyll fluorescence, specific leaf area (SLA) and net photosynthetic rate at a photosynthetically active radiation (PAR) of 1000 µmol m(-2) s(-1) (A1000) were measured. Photosynthetic light and CO2 response curves were obtained from 11 of the genotypes, and shoot growth rate was measured under field conditions. KEY RESULTS: A positive linear relationship was found between SLA and light-saturated photosynthesis (Asat) across genotypes, and also between shoot growth rate under cool field conditions and A1000 at 14 °C in a climate chamber. When lowering the temperature from 24 to 14 °C, one M. sacchariflorus exhibited significantly higher Asat and maximum photosynthetic rate in the CO2 response curve (Vmax) than other genotypes at 14 °C, except M × giganteus 'Hornum'. Several genotypes returned to their pre-chilling A1000 values when the temperature was increased to 24 °C after 24 d growth at 14 °C. CONCLUSIONS: One M. sacchariflorus genotype had similar or higher photosynthetic capacity than M × giganteus, and may be used for cultivation together with M × giganteus or for breeding new interspecies hybrids with improved traits for temperate climates. Two easily measured variables, SLA and shoot growth rate, may be useful for genotype screening of productivity and cold tolerance.


Assuntos
Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Poaceae/fisiologia , Clorofila/química , Clorofila/metabolismo , Genótipo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Ploidias , Poaceae/genética , Temperatura
6.
Int J Mol Sci ; 16(4): 8997-9016, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25913379

RESUMO

Biorefinery applications are receiving growing interest due to climatic and waste disposal issues and lack of petroleum resources. Jerusalem artichoke (Helianthus tuberosus L.) is suitable for biorefinery applications due to high biomass production and limited cultivation requirements. This paper focuses on the potential of Jerusalem artichoke as a biorefinery crop and the most viable products in such a case. The carbohydrates in the tubers were found to have potential for production of platform chemicals, e.g., succinic acid. However, economic analysis showed that production of platform chemicals as a single product was too expensive to be competitive with petrochemically produced sugars. Therefore, production of several products from the same crop is a must. Additional products are protein based ones from tubers and leaves and biogas from residues, although both are of low value and amount. High bioactive activity was found in the young leaves of the crop, and the sesquiterpene lactones are of specific interest, as other compounds from this group have shown inhibitory effects on several human diseases. Thus, future focus should be on understanding the usefulness of small molecules, to develop methods for their extraction and purification and to further develop sustainable and viable methods for the production of platform chemicals.


Assuntos
Helianthus/química , Extratos Vegetais/química , Produtos Agrícolas/química , Humanos , Lactonas/química , Lactonas/economia , Lactonas/isolamento & purificação , Extratos Vegetais/economia , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Proteínas de Plantas/química , Proteínas de Plantas/economia , Proteínas de Plantas/isolamento & purificação , Raízes de Plantas/química , Sesquiterpenos/química , Sesquiterpenos/economia , Sesquiterpenos/isolamento & purificação
7.
Bioresour Technol ; 163: 236-43, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24821202

RESUMO

In the present study, combined steam (140-180°C) and dilute-acid pre-hydrolysis (0.0-2.0%) were applied to industrial hemp (Cannabis sativa L.), as pretreatment for lignocellulosic bioethanol production. The influence of the pretreatment conditions and cultivation type on the hydrolysis and ethanol yields was also evaluated. Pretreatment with 1% sulfuric acid at 180°C resulted in the highest glucose yield (73-74%) and ethanol yield of 75-79% (0.38-0.40 g-ethanol/g-glucose). Taking into account the costs of biomass processing, from field to ethanol facility storage, the field-dried hemp pretreated at the optimal conditions showed positive economic results. The type of hemp cultivation (organic or conventional) did not influence significantly the effectiveness of the pretreatment as well as subsequent enzymatic hydrolysis and ethanol fermentation.


Assuntos
Ácidos/química , Cannabis/metabolismo , Etanol/metabolismo , Vapor , Biomassa , Fermentação , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...